产品展示
地址:上海市宝山区海滨四村37号101室
生产基地:江苏省如皋市东陈镇顾坊路88号
电话:021-56178091 / 56160735
021-66650767
传真:021-56178091
邮箱:shshunfa@163.com
网壳结构的稳定性
定性分析是网壳结构、尤其是单层网壳结构设计中的关键问题。国外自70年代以来,国内自80年代中期以来,网壳结构发展异常迅速,其稳定性问题遂成为研究热点领域之一。结构的稳定性可以从其荷载-位移全过程曲线中得到完整的概念。传统的线性分析方法是把结构强度和稳定问题分开来考虑的。事实上,从非线性分析的角度来考察,结构的稳定性问题和强度问题是相互联系在一起的。结构的荷载-位移全过程曲线可以准确地把结构的强度、稳定性以至于刚度的整个变化历程表示得清清楚楚。当考察初始缺陷和荷载分布方式等因素对实际网壳结构稳定性能的影响时,也均可从全过程曲线的规律性变化中进行研究。但以前,当利用计算机对复杂结构体系进行有效的非线性有限元分析尚未能充分实现的时候,要进行网壳结构的全过程分析是十分困难的。
在较长一段时间内,人们不得不求助于连续化理论("拟壳法")将网壳转化为连续壳体结构,然后通过某些近似的非线性解析方法来求出壳体结构的稳定性承载力。例如文献1-3都提出了关于球面网壳稳定性的计算公式。这种"拟壳法"公式对计算某些特定形式网壳的稳定性承载力起过重要作用。但这种方法有较大的局限性:连续化壳体的稳定性理论本身并未完善,缺乏统一的理论模式,需要针对不同问题假定可能的失稳形态,并作出相应的近似假设;事实上仅对少数特定的壳体(例如球面壳)才能得出较实用的公式;此外,所讨论的壳体一般是等厚度的和各向同性的,无法反映实际网壳结构的不均匀构造和各向异性的特点。因此,在许多重要场合还必须依靠细致的模型试验来测定结构的稳定性承载力,并与可能的计算结果相互印证。
计算机的发展和广泛应用,非线形有限元分析方法逐渐成为结构稳定性分析中有利工具。近20年来,这一领域的研究工作一直相当活跃,尤其在屈曲后路径跟踪的计算技术方面做了许多有效的探索。要实现其荷载-位移全过程分析,并不像文献中通常给出的一些简单算例那么容易。大量计算实践表明,由结构过渡到大型复杂结构的全过程分析,不只是量的变化;在后者情况下,由于计算累计误差的严重影响和减少CPU时间的迫切意义,仅仅依靠改进路径跟踪方法可能仍然无能为力;为了保证迭代的实际收敛性,本文在非线形有限元分析理论表达式的精确化、灵活的迭代策略、以及算控制参数的理选择等方面作了较细致探索。应该说,现在已完全有可能对各种复杂网壳结构进行完整的全过程分析,并且较精确地确定其稳定性极限承载力。